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1. Abstract 

The multistep enzyme catalyzed bioconversion of codeine from thebaine presents a more 

ecologically friendly route for codeine production, but industrial adoption hinges upon 

achieving economic viability, necessitating optimization of the process. To achieve this, 

maximum codeine production for the process was framed as an optimization problem, setting 

reaction parameters including enzyme introduction time, temperature and pH, as decision 

variables, and simulated with a python kinetics model.  

Enzymes, as complex biological molecules, are prone to deviation from their expected 

performance, and hence the role of enzymes in this bioconversion embeds uncertainty into 

the optimization problem. This uncertainty was mitigated by development of a 2-step 

stochastic optimization method, whereby initial reaction parameters were optimized 

according to expected kcat values - representing the expected enzyme efficiency of the system. 

After an initial, incomplete period of reaction, a deep neural network model was utilized to 

predict the true kcat values from the incomplete reaction kinetics time-series data, allowing the 

incomplete reaction to be reoptimized according to this more accurate data. A 2.6% average 

increase in codeine production over the non-reoptimized process was observed for the 

stochastically reoptimized process. 

Support vector machine models were compared to deep neural networks for several reaction 

kinetic data representations for detection of competitive contaminant inhibition of the steps of 

the reaction. Both methods performed similarly, with both performing best using PCA-

reduced Euclidean distance representations of the kinetics time series data (~95% detection 

accuracy). 

 

2. Introduction 

The global contribution of industrial chemical production to mounting ecological decay[1], 

resource depletion[2] and public health crises[3], by processes that utilize harsh reagents and 

polluting effluents, has necessitated urgent efforts for the development of sustainable and clean 

alternative methods of chemical production for every implicated industry. Though the immense 

variety of chemical structures necessitates specialized approaches for different chemical 

syntheses, a field of applied research showing bright promise, owing to its sustainability and 

versatility of application, is the use of bioprocesses, and particularly, enzyme catalyzed 

synthetic methods[4]. 



These approaches mimic natural biological pathways, utilizing their enzymes to catalyze the 

production of bioproducts, without the toxic reagents or pollution. Non-naturally occurring 

chemicals are not excluded from this technique, as advances in genetic engineering unlock the 

customization potential of synthetic enzymes, or of modified microorganisms, engineered to 

express them. 

Amongst natural compounds however, codeine exists as a prime example. A World Health 

Organization listed essential medicine[5], more than 300 tons of codeine is consumed annually, 

as the world’s most abundantly used opiate[6]. Although codeine is naturally produced in the 

opium poppy plant papaver somniferum [7], 85-90% of its current global production occurs the 

synthetic methylation of morphine, involving harsh organic solvents, a toxic methylating agent 

and a carcinogenic byproduct[7]. With the cleaner, biological pathway on display for 

inspiration, using thebaine as a precursor (another naturally occurring opioid with less potential 

for misuse than morphine), presents an attractive alternative. Despite the approach’s clear 

benefits however, the reality is that its industrial adoption will only be successful if it is 

economically attractive. The optimization of the process is therefore critical to its adoption, 

and such optimization forms the basis of this study. 

The overall process, (only recently fully characterized)[8], occurs via a 3-step enzyme catalyzed 

reaction. The enzyme T6ODM catalyzes the conversion of thebaine to neopinone, which in 

turn is converted to codeinone, catalyzed by the enzyme NISO. COR, the final enzyme, 

ultimately catalyzes the conversion of codeinone to the desired product, codeine.  

 

Fig. 1:  In vitro pathway for enzyme-catalyzed conversion of thebaine to codeine, ignoring 

unwanted side-reaction conversion of neopinone to neopine[9] 

Enzyme catalyzed reactions such as this may be modelled using reaction kinetic equations, 

such as the Michaelis-Menten equation: 

𝑑[𝑆]

𝑑𝑡
=

𝑘𝑐𝑎𝑡[𝐸]0[𝑆]

𝑘−1 + 𝑘+2
𝑘+1

+ [𝑆]
= −

𝑑[𝑃]

𝑑𝑡
 

Where [S], [E], [P] represent the concentrations of the substrate (precursor), catalyzing enzyme 

and product respectively, and k1, k-1, k2 represent the rate constant for the association and 

disassociation of the substrate-enzyme intermediate, and for the formation of the product from 

the intermediate, respectively. kcat represents the turnover rate of enzyme – a measure of the 

enzyme’s conversion effectiveness. 

Hence, the first step, thebaine conversion, can be modelled as follows. 

 
𝑑[𝑡ℎ𝑒𝑏𝑎𝑖𝑛𝑒]

𝑑𝑡
=

𝑘𝑐𝑎𝑡 𝑇6𝑂𝐷𝑀[𝑇6𝑂𝐷𝑀]0[𝑡ℎ𝑒𝑏𝑎𝑖𝑛𝑒]

𝑘−1 + 𝑘+2
𝑘+1

+ [𝑡ℎ𝑒𝑏𝑎𝑖𝑛𝑒]
 



In many multi-step enzyme catalyzed reactions, including the thebaine to codeine conversion, 

one chemical species of the process may inhibit another species from its targeted reaction. In 

these cases, controlling the concentration of each species at each time step in the reaction 

becomes an important consideration to optimize conversion. An effective way to do so is to 

control the introduction of each enzyme progressively. 

As biological compounds, enzymes are sensitive to their environmental conditions, and operate 

ideally within narrow temperature and pH ranges. In a multi-step reaction involving several 

enzymes with moderately different optimal conditions, these parameters become additional key 

optimization variables.  

The thebaine to codeine conversion reaction represents one of numerous such multistep 

reactions where the above considerations are important optimization parameters. Using this 

reaction as a concrete example for a model that could represent other similar reactions, an 

optimization study may be framed around optimizing the enzyme presence, temperature and 

pH conditions of the process to maximize the production of codeine. 

 

3. Batch Reactor Parameter Optimization 

3.1 Objective Variable 

In optimizing bioprocess output, several design choices must be made. Output goals may be 

specified in several ways; productivity, (rate of substrate conversion to product), yield, and 

time to reach a yield, are all common maximization objectives. For the purpose of this study, 

optimization is focused on reaction parameters – species presence, and physical properties, 

temperature and pH. Economic factors (cost of substrates, enzymes, reactor operation) are not 

considered here, hence the reaction timeframe, tfinal is a predefined constant, and a suitable 

objective considers only thebaine conversion to codeine, that is, productivity. If the initial 

quantity of thebaine, [thebaine]0 is also fixed, productivity is equivalent to final codeine 

conversion [codeine]t final; hence the objective variable is labelled as 

max [𝑐𝑜𝑑𝑒𝑖𝑛𝑒]𝑡 𝑓𝑖𝑛𝑎𝑙 

By extending the single reaction Michaelis-Menten equation, the multi-step reaction can be 

modelled by defining the concentration of each subsequent species as the product of the 

previous step. Each species is then modelled as follows 

𝑑[𝑡ℎ𝑒𝑏𝑎𝑖𝑛𝑒]

𝑑𝑡
=

𝑘𝑐𝑎𝑡 𝑇6𝑂𝐷𝑀[𝑇6𝑂𝐷𝑀]0[𝑡ℎ𝑒𝑏𝑎𝑖𝑛𝑒]

𝑘−1 + 𝑘+2
𝑘+1

+ [𝑡ℎ𝑒𝑏𝑎𝑖𝑛𝑒]
 

𝑑[𝑛𝑒𝑜𝑝𝑖𝑛𝑜𝑛𝑒]

𝑑𝑡
= −

𝑑[𝑡ℎ𝑒𝑏𝑎𝑖𝑛𝑒]

𝑑𝑡
+  

𝑘𝑐𝑎𝑡 𝐶𝑂𝑅[𝐶𝑂𝑅]0[𝑛𝑒𝑜𝑝𝑖𝑛𝑜𝑛𝑒]

𝑘−1 + 𝑘+2
𝑘+1

+ [𝑛𝑒𝑜𝑝𝑖𝑛𝑜𝑛𝑒]
 

 

𝑑[𝑐𝑜𝑑𝑒𝑖𝑛𝑜𝑛𝑒]

𝑑𝑡
= −

𝑑[𝑛𝑒𝑜𝑝𝑖𝑛𝑜𝑛𝑒]

𝑑𝑡
+ 

𝑘𝑐𝑎𝑡 𝑁𝐼𝑆𝑂[𝑁𝐼𝑆𝑂]0[𝑐𝑜𝑑𝑒𝑖𝑛𝑜𝑛𝑒]

𝑘−1 + 𝑘+2
𝑘+1

+ [𝑐𝑜𝑑𝑒𝑖𝑛𝑜𝑛𝑒]
 



And finally, 

𝑑[𝑐𝑜𝑑𝑒𝑖𝑛𝑒]

𝑑𝑡
=

𝑘𝑐𝑎𝑡 𝑁𝐼𝑆𝑂[𝑁𝐼𝑆𝑂]0[𝑐𝑜𝑑𝑒𝑖𝑛𝑒]

𝑘−1 + 𝑘+2
𝑘+1

+ [𝑐𝑜𝑑𝑒𝑖𝑛𝑒]
 

Ultimately, [codeine], and hence the objective function, becomes a function of the 

concentration of each prior species 

max [𝑐𝑜𝑑𝑒𝑖𝑛𝑒]𝑡 𝑓𝑖𝑛𝑎𝑙(𝑥)

= 𝑓 (
𝑑[𝑡ℎ𝑒𝑏𝑎𝑖𝑛𝑒]

𝑑𝑡
,
𝑑[𝑛𝑒𝑜𝑝𝑖𝑛𝑜𝑛𝑒]

𝑑𝑡
 ,

𝑑[𝑐𝑜𝑑𝑒𝑖𝑛𝑜𝑛𝑒]

𝑑𝑡
,
𝑑[𝑇6𝑂𝐷𝑀]

𝑑𝑡
,
𝑑[𝑁𝐼𝑆𝑂]

𝑑𝑡
,
𝑑[𝐶𝑂𝑅]

𝑑𝑡
) 

3.2 Decision Variables 

Bioprocess optimization can be subject to a plethora of parameters. Disregarding economic 

factors enables the narrowing of the scope of this study to focus on the fundamental reaction 

parameters, allowing for an intimate understanding of these factors before undertaking more 

comprehensive analyses. As such, the decision variables are as follows. 

3.2.1 Temperature 

Enzymes are complex biological proteins that developed to function at specific biological 

conditions. As such, they are sensitive to temperature, and their effectiveness dramatically 

decreases with deviation from ideal T. Each enzyme involved in a multi-step process may 

have a different optimal temperature, and hence temperature becomes a key decision variable.  

Limitations in the python package used to model the reactions, Kinetics, allowed temperature 

to be modelled at only a constant value, instead of a custom profile, as a reactor would allow. 

As such, the constant temperature value, T, is the associated decision variable.  

Although temperature effect is dramatic for high deviation, as enzymes denature and become 

completely inactive at high temperatures, most enzymes involved in multi-step reactions have 

similar Tideal values within ~10 K of each other. As such, T effect on each reaction step is 

modelled in a simplified linear manner where deviation from Tideal for the step reduces the 

enzyme effectiveness, Kcat: 

𝑑[𝑆]

𝑑𝑡
=

|𝑇𝑖𝑑𝑒𝑎𝑙 − 𝑇|
𝑇𝑖𝑑𝑒𝑎𝑙

 𝑘𝑐𝑎𝑡[𝐸]0[𝑆]

𝑘−1 + 𝑘+2
𝑘+1

+ [𝑆]
 

As Tideal for each enzyme involved in codeine synthesis lies between 30-40o C, this decision 

variable may be constrained by 30<T<40 oC. 

3.2.2 pH 

Enzymes are similarly sensitive to environmental acidity, and have characteristic ideal pH 

values. As with temperature, the pHideal values for the relevant enzymes are all similar, within 

pH 7-8, hence for this small range, the pH effect can be simplified to be modelled by 

affecting Kcat in the same linear manner as temperature (taken together with temperature 

effect), with a constant value pH becoming the associated decision variable: 



𝑑[𝑆]

𝑑𝑡
=

|𝑝𝐻𝑖𝑑𝑒𝑎𝑙 − 𝑝𝐻|
𝑝𝐻𝑖𝑑𝑒𝑎𝑙

 
|𝑇𝑖𝑑𝑒𝑎𝑙 − 𝑇|

𝑇𝑖𝑑𝑒𝑎𝑙
 𝑘𝑐𝑎𝑡[𝐸]0[𝑆]

𝑘−1 + 𝑘+2
𝑘+1

+ [𝑆]
 

As pHideal for each enzyme involved in codeine synthesis lies between7-8, this decision 

variable may be constrained by 7<pH<8. 

3.2.3 Enzyme Introduction Time 

Chemical inhibition occurs when one species of a reaction, though various mechanisms, 

reacts with another species (enzyme or substrate), limiting its ability to take part in its 

associated step of the reaction. In the codeine reaction, inhibition appears to occur in complex 

ways. As a simplification, for this study it is taken that the only inhibition occurring between 

the desired species is the competitive inhibition by codeine, on the conversion of thebaine to 

neopinone, where the inhibition is modelled as follows (including T and pH effects) 

𝑑[𝑆]

𝑑𝑡
=

|𝑝𝐻𝑖𝑑𝑒𝑎𝑙 − 𝑝𝐻|
𝑝𝐻𝑖𝑑𝑒𝑎𝑙

 
|𝑇𝑖𝑑𝑒𝑎𝑙 − 𝑇|

𝑇𝑖𝑑𝑒𝑎𝑙
 𝑘𝑐𝑎𝑡[𝐸]0[𝑆]

𝑘−1 + 𝑘+2
𝑘+1

(1 +
[𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟]

𝑘𝑖𝑛ℎ𝑖𝑏
) + [𝑆]

 

As such, it is desirable to limit the production of codeine - the final product of the reaction - 

until the bulk of the thebaine has been converted into neopinone. As the production of 

codeine requires and is catalysed by COR, an effective method to control codeine production 

is to control the timing of COR introduction to the reactor. The Kinetics python package does 

not directly cater for such control; controlling the concentration of an enzyme is limited to 

defining d[E]/dt as a continuous ODE. As such, the best solution found was to govern 

enzyme concentration by defining d[E]/dt as a logistic differential equation 

𝑑[𝐸]

𝑑𝑡
= 𝑟 [𝐸](1 −

[𝐸]

[𝐸]𝑚𝑎𝑥
) 

So that [E] follows a logistic introduction profile from initial to maximum concentration 

[𝐸] =  
[𝐸]𝑚𝑎𝑥

1 + (
[𝐸]𝑚𝑎𝑥 − [𝐸]𝑖𝑛𝑖𝑡

[𝐸]𝑖𝑛𝑖𝑡
)𝑒−𝑟𝑡

 

where r is the parameter that influences the delay and slope of the logistic profile – hence it 

determines the delay and rate of introduction of enzyme. For this study, r becomes the 

decision variable associated with enzyme introduction time. As the only inhibition occurring 

involves a later species inhibiting a previous process, there is no need for negative sloped 

profiles, so r can be constrained to non-negative values. r was optimized for the final two 

enzymes – NISO and COR. For the study, rT6ODM was ignored as none of the species involved 

in the first reaction step inhibit any other processes, hence T6ODM could be maximized from 

t=0. 

3.3 Objective Function 

With the decision variables defined, the full objective function may be formulated: 



max [𝑐𝑜𝑑𝑒𝑖𝑛𝑒]𝑡 𝑓𝑖𝑛𝑎𝑙(𝑥) = 𝑓 (
𝑑[𝑡ℎ𝑒𝑏𝑎𝑖𝑛𝑒]

𝑑𝑡
,
𝑑[𝑛𝑒𝑜𝑝𝑖𝑛𝑜𝑛𝑒]

𝑑𝑡
 ,

𝑑[𝑐𝑜𝑑𝑒𝑖𝑛𝑜𝑛𝑒]

𝑑𝑡
,
𝑑[𝑇6𝑂𝐷𝑀]

𝑑𝑡
,
𝑑[𝑁𝐼𝑆𝑂]

𝑑𝑡
,
𝑑[𝐶𝑂𝑅]

𝑑𝑡
) 

𝑓𝑜𝑟 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑥0 = 𝑇, 𝑥1 = 𝑝𝐻, 𝑥2 = 𝑟𝑁𝐼𝑆𝑂, 𝑥3 = 𝑟𝐶𝑂𝑅 , 

 

𝑤ℎ𝑒𝑟𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑙𝑦,
𝑑[𝑠𝑝𝑒𝑐𝑖𝑒𝑠]

𝑑𝑡
= 𝑔(𝑡, 𝑝𝐻, 𝑇, [𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑠], [𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠], [𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑠], [𝐸]) 

𝑎𝑛𝑑 
𝑑[𝐸]

𝑑𝑡
= ℎ(𝑡, 𝑝𝐻, 𝑇, 𝑟) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

30 ≤ 𝑥0 ≤ 40 

7.0 ≤ 𝑥1 ≤ 7.8 

0 ≤ 𝑥2 

0 ≤ 𝑥3 

3.4 Initial Optimization Implementation 

The python Kinetics package was used to model the overall reaction, calculating the 

concentration of each species at each timestep, governed by the ODE rate equations specified 

in previous sections. Pyomo and scipy packages, particularly scipy.optimize, were then used 

for the parameter optimization, calling the Kinetics model to calculate [codeine]t final, taking 

this value as the objective.  

For tfinal = 50 min, and the reaction parameters as given in Appendix A, the optimal values for 

the decision variables are presented in table 1, with the corresponding concentration curves 

presented in fig. 2. 

Reaction 

variable 

T (oC) pH rNISO rCOR 

Optimized 

value 

35.6 7.30 0.69 0.42 

Table 1. Optimized reaction variables for thebaine to codeine conversion 

 

Figure 2. Reaction kinetics for optimized thebaine to codeine conversion:                             

a) reaction species concentrations b) Enzyme introduction profiles 



 

Figure 3. Codeine yield for varied decision variable values 

 

The model can be extended to cater for an arbitrary quantity of enzyme catalyzed steps, 

optimizing the introduction profile of each enzyme according to inhibitions within the 

process. Below shows the optimization for an arbitrary 6 enzyme process with more 

complicated inhibition interactions. 

 

Figure 4. Reaction kinetics for optimized generic 6 step conversion reaction:                             

a) reaction species concentrations b) Enzyme introduction profiles 

3.5 Stochastic Two-Step Optimization 

Enzymes, as complex biological proteins, are prone to deviation from expected behaviour. As 

such, enzyme catalyzing performance may vary from theoretical performance. Enzyme kinetics 

models such as the one described here represent enzyme performance by the enzyme’s kcat, or 

turnover number. In the optimization problem described above, parameters are optimized 

assuming a specific kcat value for each enzyme. With the objective function a function of kcat, 

if the actual values, kcat exp differ from the theoretical values, the ‘optimized’ decision variables 

x are likely sub-optimal. Hence, it is valuable to determine kcat exp. 



Kcat exp can only be determined empirically by observation of the kinetics of a reaction. This 

challenge allows the problem to be framed as a stochastic optimization one with the following 

steps: X is optimized for assumed kcat theor values. Once the reaction has partially proceeded, at 

tpartial, evaluate kcat exp from the incomplete reaction kinetics. Then reoptimize X given kcat theor, 

and finally, apply the reoptimized X values to complete the reaction.  

3.5.1 Deep Neural Network Kcat Prediction 

Deep neural networks (DNNs) are a class of neural network utilizing stacked hidden layers 

between input and output layers. They are effective for classification problems given a set of 

features.  

A DNN model was applied to estimate kcat exp from the incomplete reaction kinetics (see 

appendix a for model architecture). The incomplete reaction data comprised of the 

concentration of each reaction species for each timestep from t0 to tpartial = 20 min, as a separate 

time-series array for each species. To transform the data for the DNN, each time-series was 

simply concatenated to form one long array.  

Training/test data of the same format was generated by simulating n=1000 reactions with the 

Kinetics model, with randomized kcat, k1 values for variance, using the reaction data as the 

feature vector y, and the predetermined kcat value as the ground-truth label, X. The test/training 

data split followed a 60/40 ratio. The training results are as follows. 

Following training, the model was utilized to evaluate kcat exp in the context of the two-step 

stochastic optimization problem. With reoptimization occurring at tpartial = 20 min, an average 

increase in codeine yield of 2% was observed compared with when x is optimized for kcat theor 

only. Fig. 5 illustrates the reaction kinetics for reoptimized vs non-reoptimized reactions with 

the same kcat exp. Note the visible divergences at t=20, after which the reoptimized reactions 

typically convert more codeinone into codeine.  

 

Figure 5. Comparison of kinetic concentration curves for 50 codeine conversion reactions, 

for reoptimization at tpartial = 20 min vs no reoptimization.  

3.5.2 tpartial optimization 



The success of the two-step method poses an optimization problem of its own: For what value 

of tpartial is codeine yield optimized? Lower tpartial allows more of the reaction to occur with the 

superior reoptimized X values, but risks insufficient reaction data from which to accurately 

evaluate kcat exp, while higher tpartial reverses this tradeoff proposition.  

To investigate this, the reoptimization process was repeated for t_partial = 10 min to compare 

against the initial 20 min result. Plotting the reaction kinetics for the reoptimized at t=10, 20 

mins vs non-reoptimized reactions shows visible divergence after the reoptimization times (fig. 

6). Although the plot shows several tpartial=10 min reactions generating the highest codeine 

yield, on average it performed worse than tpartial=20 (table 2), indicative that its kcat predictions 

were more varied and less reliable, as corroborated by its higher average MSE from the true 

values. 

 

Reoptimization time, 

tpartial (min) 

Average codeine 

yield (mM) 

Average % increase 

over non-reoptimized 

reaction 

Average DNN 

kcat MSE 

No reoptimization 83.5 - - 

10 85.4 2.32 1.06 

20 85.7 2.63 0.887 

 

Table 2. Optimized reaction variables for thebaine to codeine conversion 

 

Figure 6. Comparison of kinetic concentration curves for 50 codeine conversion reactions, 

for  reoptimization at tpartial = 10 min, tpartial = 20 min, and no reoptimization.  

A more rigorous optimization problem was not performed here due to computation time 

constraints, but may be framed by setting the objective function as the maximum average 

[codeine]t final for the reoptimized process as a function of tpartial, evaluated by formulating this 

function by the procedure followed in 3.5.1. 

max[𝑐𝑜𝑑𝑒𝑖𝑛𝑒]𝑡 𝑓𝑖𝑛𝑎𝑙 = 𝑓(𝑡𝑝𝑎𝑟𝑡𝑖𝑎𝑙) 



 

4 Contaminant Detection 

Enzymes utilized in bioprocesses are typically contained by microbes that are engineered to 

express them, and then grown via industrial fermentation processes using sustainably derived 

feedstock. The organic nature of the microbes, as well as the feedstock, provides sources of 

contamination in the final bioprocess. 

Some contaminants have inhibitory effects on one or more steps of the reaction, such that a 

viable method of detecting these contaminants is to identify unexpected inhibition within the 

reaction. Reaction kinetics data of the kind used in this study is ideal for this purpose, and 

machine learning techniques may be applied to this data to detect inhibitory contamination. 

Such inhibition was simulated for the modelled codeine bioprocess, and two machine learning 

approaches – Support Vector Machines (a classical machine learning technique); and Deep 

Neural Networks (a modern approach) - were applied and compared in detecting 

contamination.  

4.1 Contaminant Simulation 

For the scope of this study, only competitive inhibition – whereby a contaminant species targets 

the active site of the enzyme, preventing the substrate from accessing it) – was examined. To 

simulate competitive inhibition, the Kinetics codeine model used throughout this study was 

modified via inbuilt functions to include competitive inhibition, represented by an inhibition 

rate coefficient, ki¸ an inhibitor concentration, [i], and a specific target enzyme, e.  

Inhibition properties for 1000 simulations were generated by randomizing [i] within 5-25 mM 

and the target enzyme (T60DM, NISO, COR, or no enzyme to represent no inhibition), holding 

ki constant to focus on [i] effects for this initial study. Kinetics data for 1000 corresponding 

reaction simulations was generated by running the Kinetics model with these properties, by 

slightly randomizing kcat for variance. The resultant kinetics data was modified with slight 

noise to more accurately resemble real data. 

Setting [i], e, for each simulation as the target, y, and the reaction data as the feature, X, the 

data is prepared for machine learning analysis.  

4.2 Classical Machine learning: PCA transformed SVM 

For each simulation, X comprised of concentration time-series of thebaine, neopinone, 

codeinone and codeine, at each of 1000 timepoints. To make the data more tractable for further 

processing, for each element of X, the Euclidean distance between each species time series, 

and a time series of the same species for a reference reaction with no contaminant inhibition, 

was calculated; thereby reducing each X element to a vector of 4 Euclidean distance values. 

This 4-dimensional data was then reduced to 3-dimensional and 2-dimensional representations 

using PCA transformation, allowing the data to be visualized to gain an intuition for its 

separation, and so that SVM classification could be compared between 4-dimensional and 3-

dimensional data, as well as for a concatenated time-series representation as outlined in section 

2.5.1. 



Data 

Representation 

4-d 

Euclidean 

distance 

3-d 

Euclidean 

distance 

4-d 

Euclidean 

distance to 

3-d PCA 

4-d 

Euclidean 

distance to 

2-d PCA 

Concatenated 

time-series 

Binary 

Accuracy (%) 

95.3 92.3 93.6 89.1 92.8 

Multilabel 

Accuracy (%) 

91.1 90.3 94.0 91.5 91.4 

Table 3. SVM performance for binary and multilabel reaction step inhibition detection 

 

Figure 7: 3D plot of reaction instances and true inhibition labels for a) 3D PCA reduced 4D 

Euclidean-distance representation and b) 3D Euclidean distance representation 

Applying a 60/40 training/test split, both binary and multilabel SVM models with linear 

separators were applied to each data representation. Although individual SVM models which 

utilize a single boundary vector can only separate spatial data into two groups, and hence can 

only perform binary-classification, multiple SVM models can be combined for multilabel 

classification. The ‘One vs Rest’ (OvR) method was the multilabel SVM appear used here; 

OvR operates by dedicating one binary SVM model to each class, separating data with the 

specified class label, from all other data. Combined, the model functions as a multilabel 

classifier.  

Unsurprisingly, for the Euclidean distance and time series representations, binary classifiers 

performed better than the multilabel models. Notably, the PCA reduced representations both 

yielded better accuracy for multilabel classification however, and in fact were the best 

performing multilabel models. By plotting the 3-d spatial arrangement of the 3-d Euclidean 

distance and 3-d PCA reduced data, it is observed that the PCA data, designed to maximize 

variance between data, is better separated, and hence likely more amenable to linear separation, 

suggesting a cause for their improved performance (fig. 7). The multilabel performance 

improvement of the PCA representation over binary classification could in part be due to the 

capacity of  multiple binary OvR classifiers to better capture dependencies between classes 

than a single binary classifier.  

4.3 Modern Machine Learning: Deep Neural Networks 

A deep neural network model was applied to each of the X representations of the previous 

section. 



Data 

Representation 

4-d 

Euclidean 

distance 

3-d 

Euclidean 

distance 

4-d 

Euclidean 

distance to 

3-d PCA 

4-d 

Euclidean 

distance to 

2-d PCA 

 

Concatenated 

time-series 

Accuracy (%) 94.3 92.4 95.8 94.6 81.1 

Table 4. DNN performance for multilabel reaction step inhibition detection 

Although the concatenated time-series was the only data representation not involving a loss of 

information in conversion, it performed the worst. The retention of all the data itself may be an 

issue, as all present noise was retained. The scale of each concatenated time series (4000 time 

points) may also pose a difficulty for the model, with only a small portion of the data likely to 

contain information indicating the target label. The large data with small variance may also 

have made the model prone to overfitting, which was likely observed, with the model 

performing erratically, and worsening at epochs <15.  

Conversely, 3-d PCA reduced Euclidean distance data, retaining less original information than 

all representations except its 2-d counterpart, performed best. This may indicate that the PCA 

reduction, designed to capture the most significant features of the data, effectively filtered out 

noise and irrelevant features from its input representation, retaining relatively more significant 

variations. The 2-d representation filtered out noise and irrelevant variations also, as indicated 

by its improved classification performance compared to its input 4-d data, though its worse 

performance than its 3-d counterpart indicates that the reduction to 2-dimensions necessarily 

diminished the retention of some significant features. That the pre-PCA processed Euclidean 

representations performed better than the time-series data may be indicative that this data-

reduction mitigated the present noise, and reduced the overfitting of the large scale data. 

5 Further Steps 

The growing importance of industrial bioprocess application and the inherent variability and 

uncertainty of bioprocess characteristics, coupled with the positive results of this study, are 

encouragement for the benefit and feasibility of machine learning characterization and 

stochastic optimization of bioprocesses. The precise mathematical modelling of reaction 

kinetics lends itself well to optimization and characterization, and highly sophisticated 

optimization frameworks may reasonably be developed with this one as foundation. Some 

possible areas for development are as follows. 

5.1 Objective Function 

The objective function defined here considered only reaction parameters as decision variables. 

A more sophisticated function may be developed to model dependencies on other important 

industrial considerations, including economic factors such as expenditure of reaction 

equipment, operational expenditure of energy consumption and reagent costs, and time 

constraints, allowing for optimization of additional associated decision variables. 

5.2 Kinetic Modelling 

The Kinetics package provided an efficient foundation for modelling bioprocess reaction 

kinetics, however it was restrictive for more sophisticated reaction control, and more 

sophisticated modelling, such as modelling temperature and pH effects, required manual 

development. With some of this work already done, developing a kinetic modelling package 



more tailored to parameter control and optimization would be feasible, and would allow for 

greater freedom in controlling the reaction.  

Control of enzyme concentration, for instance, was severely restricted within the Kinetics 

model, and had to be done using non-ideal reverse engineered logistic function profiles. 

Development of a model allowing for greater freedom of enzyme concentration profiles would 

allow enzyme concentration to be more effectively optimized.  

Setting profiles for reaction parameters such as temperature and pH was similarly restrictive, 

and more control over these profiles would similarly allow for greater optimization where 

different stages of reaction benefit from different reaction conditions. More sophisticated 

mathematical modelling of temperature, pH and other reaction parameter effects too, would 

allow for models of greater resemblance to their physical counterparts and hence more accurate 

modelling and optimization. 

5.3 Hyperparameter and Model Optimization 

The scope of this study emphasized the application of optimization and machine learning 

models to industrially important bioprocess procedures. The machine learning models used in 

this study are themselves subject to optimization, and while the models were extensively 

experimented with until satisfactory performance was achieved, their design and 

hyperparameters were not exhaustively optimized. Such optimization of the models themselves 

would lead to improved performance of their applications in this system. 

Trying SVM separators other than linear separation, and adjusting the SVM c parameter, for 

instance, could boost performance. Similarly, the neural networks utilized could be further 

optimized by adjusting the architecture of the models (for instance, adding more layers, 

experimenting with dropout to reduce overfitting, and improving time-series learning with 

Recurrent Neural Networks), and by scrutinizing hyperparameters such as batch size and 

activation functions would lead to improved performance.  

Such parameter optimization may be rigorously framed as optimization problems and explored 

using sampling techniques such as grid-search and monte-carlo sampling to find optimal 

hyperparameter values. 

5.4 Stochastic Optimization 

As demonstrated, the two-step stochastic optimization approach utilized here is subject to its 

own hyperparameter, tpartial, which may be subjected to a rigorous optimization process. 

Additionally, the stochastic approach used could itself be extended, with experimentation into 

incorporating multiple optimization stages beyond a two-step model, to the point of a dynamic 

optimization approach, to determine if this yields better bioprocess optimization.  

6 Conclusion 

Codeine production via the enzyme catalyzed multistep conversion of thebaine was maximized 

by modelling the kinetics of the reaction and formulating an optimization problem with reaction 

parameters T, pH, and enzyme introduction time coefficients as the decision variables. 

This optimization problem formed the basis for a stochastic 2-step optimization method, 

designed to mitigate the challenge of optimizing the reaction given the uncertainty of the 

enzyme effectiveness – the enzyme kcat values. The stochastic method utilized a deep neural 



network model to predict kcat actual values based on incomplete reaction data, allowing for 

reoptimization and achieving a 2.6% average increase in codeine yield over non-reoptimized 

simulations.  

SVM and DNN models were utilized to detect competitive inhibition by contaminants, from 

reaction concentration time-series, with both approaches achieving 95% accuracy in detecting 

which reaction step was inhibited. PCA transformed Euclidean distance representations of the 

original time-series data achieved the highest accuracy. 
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